Rudal Canggih dari Tiga Negara Superpower: JASSM, Kinzhal, dan DF-41

Main Article Content

Arip Nurahman
Pandu Pribadi

Abstract

Pengembangan dan produksi peluru kendali memiliki biaya yang sangat tinggi, tergantung pada jenis, kompleksitas, dan teknologi yang digunakan. Biaya operasional dan pemeliharaan juga besar dan memerlukan investasi terus-menerus. Meskipun demikian, banyak negara tetap melakukan pengembangan peluru kendali sebagai bagian dari strategi pertahanan dan simbol kekuatan. Pengembangan peluru kendali dapat memberikan kemajuan dalam teknologi dan ilmu pengetahuan, namun penggunaannya dapat menimbulkan dampak negatif seperti meningkatnya ketegangan antarnegara dan risiko konflik. Oleh karena itu, penggunaan peluru kendali harus dipertimbangkan dengan matang dan memperhatikan aspek-aspek etis dan hukum yang berkaitan. Pengembangan teknologi peluru kendali terus berlanjut, dan banyak negara berlomba-lomba untuk mengembangkan teknologi yang lebih canggih dan presisi. Namun, dalam penggunaannya, aspek-aspek etis dan hukum yang berkaitan dengan penggunaan peluru kendali harus diperhatikan.

Downloads

Download data is not yet available.

Article Details

How to Cite
Nurahman, A., & Pribadi, P. (2023). Rudal Canggih dari Tiga Negara Superpower: JASSM, Kinzhal, dan DF-41. Bincang Sains Dan Teknologi, 2(01), 21–29. https://doi.org/10.56741/bst.v2i01.295
Section
Articles
Author Biographies

Arip Nurahman, Institut Pendidikan Indonesia

Arip Nurahman adalah dosen jurusan Pendidikan Fisika di Institut Pendidikan Indonesia, Jawa Barat. Lulus dari Magister Pendidikan Fisika Universitas Ahmad Dahlan Yogyakarta, dan Sarjana Pendidikan Fisika dari UPI Bandung. Dia memiliki minat penelitian pada bidang Pendidikan Fisika, AI, Komputasi Kuantum, dan Astrofisika (email: aripnurahman@institutpendidikan.ac.id).

Pandu Pribadi, STIT Muhammadiyah Kota Banjar

Pandu Pribadi adalah dosen di STIT Muhammadiyah, Kota Banjar, Jawa Barat, Indonesia. Lulus dari Magister Pendidikan Fisika di Universitas Ahmad Dahlan, Yogyakarta. Dia memiliki minat penelitian pada bidang Fisika-Astronomi, Elektronika & Robotika (email: pandupribadi2384@gmail.com).

Received 2023-03-01
Accepted 2023-03-05
Published 2023-03-06

Plaudit

References

Weitz, R. (2010). Illusive visions and practical realities: Russia, NATO and missile defence. Survival, 52(4), 99-120.

Liang, L. E. I., Danfa, Z. H. O. U., Ying, Z. H. A. N. G., Cunfeng, G. U., & Rui, L. I. U. (2022). Life Cycle Cost Analysis and Control Strategy of Missile Weapons. Acta ArmamentarII, 43(S2), 107-114.

Gregg, S. P., Scharadin, R., & Clements, P. (2015, July). The more you do, the more you save: the superlinear cost avoidance effect of systems product line engineering. In Proceedings of the 19th International Conference on Software Product Line (pp. 303-310).

Carter, A. B., & Schwartz, D. N. (Eds.). (2010). Ballistic missile defense. Brookings Institution Press.

Brockman, K., Bauer, S., Boulanin, V., & Lentzos, F. (2019). New developments in biology. In Conference Reader: Capturing Technology. Rethinking Arms Control. German Federal Foreign Office

Sankaran, J., & Fearey, B. L. (2017). Missile defense and strategic stability: Terminal high altitude area defense (THAAD) in South Korea. Contemporary security policy, 38(3), 321-344.

Obering, H., & Heinrichs, R. L. (2019). Missile Defense for Great Power Conflict. Strategic Studies Quarterly, 13(4), 37-56.

Karako, T. (Ed.). (2017). Missile defense and defeat: Considerations for the new policy review. Rowman & Littlefield.

Cimbala, S. J. (2012). Minimum deterrence and missile defenses: what's new, what's true, what's arguable. Defense & Security Analysis, 28(1), 65-80.

Yanushevsky, R. T. (2018). Modern missile guidance. CRC Press.

Korda, M., & Kristensen, H. M. (2019). US ballistic missile defenses, 2019. Bulletin of the Atomic Scientists, 75(6), 295-306.

Sarfaraz, O., Adil, M., GhayasUddin, M., Qadri, M. T., & Mohy-Ud-Din, Z. (2015). GPS Inertial Missile Guidance System. Communications in Control Science and Engineering (CCSE), 3, 15-20.

Xu, M., Bu, X., Han, W., & Cao, Y. (2019). Dual-band infrared radiation for rotating missile attitude measurement and interference compensation. IEEE Access, 7, 69326-69338.

Wang, X., Zheng, Y., & Lin, H. (2015). Integrated guidance and control law for cooperative attack of multiple missiles. Aerospace Science and Technology, 42, 1-11.

Satyaprasad, P., Pandu Ranga Sharma, M., Richarya, A., Rolex Ranjit, A., & Subhash Chandran, B. S. (2017). Missile propulsion systems. Aerospace Materials and Material Technologies: Volume 2: Aerospace Material Technologies, 305-330.

Micheli, D., Pastore, R., Vricella, A., & Marchetti, M. (2015, June). Shell absorbing nanostructure for low radar observable missile. In 2015 7th International Conference on Recent Advances in Space Technologies (RAST) (pp. 49-54). IEEE.

Ouyang, C., Zhang, S., Xue, C., Yu, X., Xu, H., Wang, Z., ... & Wu, Z. S. (2020). Precision-guided missile-like DNA nanostructure containing warhead and guidance control for aptamer-based targeted drug delivery into cancer cells in vitro and in vivo. Journal of the American Chemical Society, 142(3), 1265-1277.

Fleeman, E. (2012). Missile design and system engineering. American Institute of Aeronautics and Astronautics, Inc..

Majumdar, S. (2021). Lockheed Martin's AGM-158 JASSM. Vayu Aerospace and Defence Review, (1), 128-129.

Laad, P. A. (2021). Hypersonic flow control via the use of off-axis energy deposition: application to the Kh-47M2 Kinzhal missile (Doctoral dissertation, Rutgers The State University of New Jersey, School of Graduate Studies).

Prathibha, M. S. (2019). China’s DF-41 Ballistic Missile Deployment and the Impact on its Nuclear Deterrence. Focus, 13(4).

Chowdhury, I. A. (2018). A Tale of Missiles and Men. Defence Journal, 22(4), 11-12.

Davenport, K. (2018). North Korea Tests New Long-Range Missile. Arms Control Today, 48(1), 30-31.