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Abstract—This study seeks to determine whether the 

clustering method can be used to analyze Flores Sea 

earthquake activity. The BMKG Repo is the source for real 

earthquake vibration data collection in this investigation. The 

stages of this research include preparing the data in CSV 

format and then preparing the data to eliminate useless data 

by identifying missing data. Based on the research data, it 

was determined that the K-Means and DBSCAN methods are 

used to determine the clustering method for analyzing 

earthquake activity. In addition, the data is depicted using a 

graphical Elbow method to determine the number of clusters 

of aftershocks in the Flores Sea. The results of the 

visualization of aftershocks that followed earthquakes in the 

Flores Sea between 2019 and 2022 revealed three distinct 

groups of earthquake source depths: 33 to 70 kilometres, 150 

to 300 kilometres, and 500 to 800 kilometres. Regarding the 

silhouette index parameter, the K-Means algorithm is 

preferable to the DBSCAN algorithm when clustering results 

are used to analyze earthquake activity. 

 
Index Terms— cluster method, DBSCAN, earthquake, K-

Means 

I. INTRODUCTION 

EISMIC activity is a complex natural phenomenon 

that frequently causes substantial devastation and 

social effects [1]. Aftershocks, or what are 

commonly referred to as aftershocks, are minor 

earthquakes that occur after the primary earthquake [2]. 

Aftershocks can cause fear and anxiety in the general 

public, particularly if they occur long after the primary 

earthquake [3]. As one of Indonesia's active tectonic plate 

connection zone regions, the Flores Sea is prone to 

earthquakes. Seismic events in this region can make it 

difficult for scientists and researchers to understand the 

characteristics of aftershocks and seismic activity patterns 

[4]. A suitable and efficient analytical method is required 

to analyze and comprehend the aftershock activity in the 

Flores Sea from 2019 to 2022. K-Means and DBSCAN are 

two clustering algorithms frequently employed in seismic 

analysis [5]. 

The K-Means algorithm is one of the most extensively 

used clustering algorithms and is utilized in numerous 

research fields, such as seismology [6], [7]. This algorithm 

functions by clustering data based on the shortest distance 

between each data point and the group's center [8]. K-

Means can assist in identifying seismic patterns in 

aftershock activity in the Flores Sea, which can provide 

valuable insights into the characteristics and behavior of 

aftershocks in the region [1]. The DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) 

algorithm is a clustering technique that emphasizes data 

density-based grouping [9]. DBSCAN can identify 

concentrated regions in the seismic distribution and isolate 

noise or improperly classified data [10], [11]. This makes 

this algorithm attractive for analyzing the Flores Sea's 

complex seismic activity. 

In this study, we will compare the performance of the 

K-Means and DBSCAN algorithms in classifying 

aftershock activity data from 2019 to 2022 in the Flores 

Sea. This comparative analysis will enhance our 

understanding of the characteristics of aftershocks in this 

region and contribute to efforts to reduce the likelihood of 

future earthquakes. Through a greater comprehension of 

seismic activity patterns in the Flores Sea, it is anticipated 

that this study's results will significantly contribute to 

seismology and our knowledge of this complex natural 

phenomenon. In addition, the findings of this study can 

provide authorities and related parties with valuable 

information for disaster mitigation and the development of 

earthquake-resistant infrastructure in the region. 

 

II. METHOD 

We collected seismic data from the Flores Sea between 

2019 and 2022 and preprocessed and normalized the data 

for this investigation. The K-Means and DBSCAN 

algorithms were then implemented to classify aftershock 

activity in the region [11]–[13]. The evaluation was 

conducted with the clustering evaluation metric, and the 

outcomes of the two algorithms were contrasted and 

analyzed [14], [15]. This study's findings shed light on the 

patterns and characteristics of aftershocks in the Flores Sea 

and assess the benefits and drawbacks of each algorithm. 

These findings can significantly contribute to seismology 

and the development of disaster mitigation in this region, 

which is prone to earthquakes. 

A. Data Collection 

Flores Sea seismic data from 2019 to 2022 are acquired 

from trusted seismological institutions, such as the 

Indonesian Meteorology, Climatology, and Geophysics 

Agency (BMKG) and IRIS DMC. The data must include 

the earthquake's time, location (latitude and longitude), 

depth, and magnitude of aftershocks. 

B. Preprocessing of Data 

Collected seismic data must be preprocessed to 

guarantee its quality and purity. This includes handling 

missing data, outliers, and duplicates and conducting data 

transformations as required. 

C.  Data Normalization 

As the clustering algorithm is sensitive to data scale, it is 

S 
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necessary to normalize the data to equalize the range of 

variables. 

D.  Parameter Selection 

Define The number of clusters (k) is the most important 

parameter to select in the K-Means algorithm. In the 

DBSCAN algorithm, the epsilon distance () and the 

minimum number of points (MinPts) within a radius of are 

essential parameters for identifying clusters. Testing each 

algorithm's parameters with various values may be 

necessary to conduct a fair comparison. 

E.  K-Means Algorithm Implementation 

Define As the clustering algorithm is sensitive to data 

scale, it is necessary to normalize the data to equalize the 

range of variables. 

F.  DBSCAN Algorithm Implementation 

The DBSCAN algorithm uses pre-processed seismic data 

and determines clusters based on the data point density. 

G.  Outcome Evaluation 

The results of both algorithms are evaluated using a 

clustering evaluation metric such as the Davies-Bouldin 

index, Dunn index, or another validity index. This metric 

aids in assessing the quality of the clusters generated by 

each algorithm. 

H.  Analysis and Comparison of Results 

The results of both the K-Means and DBSCAN 

algorithms are analyzed and compared to determine the 

performance of each algorithm in classifying aftershock 

activity in the Flores Sea. The comparison results provide 

insight into this region's patterns and characteristics of 

aftershocks. 

I.  Interpretation of Results 

The findings from the comparative analysis are 

interpreted to determine the advantages and disadvantages 

of each algorithm in the analysis of aftershock activity in 

the Flores Sea. This conclusion is beneficial for shedding 

additional light on seismology science and disaster 

mitigation policies. 

J.  Conclusion 

In the conclusion section, summarize the comparison's 

results and the most significant findings of this study. 

Please indicate whether the K-Means or DBSCAN 

algorithm is more appropriate or effective for analyzing 

aftershock activity in the Flores Sea, and provide 

recommendations for their use in future research and 

development. 

  
Fig. 1. Research method 

III. RESULT AND DISCUSSION 

Indonesia's Flores Sea has a complex geological history 

that generates significant seismic activity [16]. The Pacific 

Ring of Fire, a fault line that is both seismically and 

volcanically active, borders this ocean [4]. The Indo-

Australian, Eurasian, and Pacific Plate interact and induce 

earthquakes in this region [5], [17]. Seismicity around the 

Flores Sea is also a result of subduction activity beneath the 

Indo-Australian tectonic plate, which is descending beneath 

the Sunda Plate [18]–[20]. In this region, earthquakes can 

potentially cause tsunamis, endangering infrastructure and 

coastal communities. Understanding the background of this 

seismicity is crucial for raising awareness of potential threats 

and enhancing mitigation efforts to safeguard Flores Sea 

residents and ecosystems. From 2019 to 2022, 1,445 seismic 

data records were obtained from the BMKG database for this 

investigation. The first five earthquake distribution catalogue 

data and the last five earthquake distribution catalogue data. 

 
Fig. 2. The first five earthquake distribution catalogue data 

 

 
Fig. 3. The last five earthquake distribution catalogue data 

.  

Before commencing earthquake data analysis, it is essential 

to perform the required data processing. This method begins 

with collecting data from the first to the last five earthquakes. 

The following phase was feature selection, in which the 

coordinates for latitude, longitude, earthquake magnitude, and 

depth of earthquake occurrence were chosen as essential 

information for the subsequent study. These data facilitate a 

more specialised study and play a crucial role in earthquake 

modelling. 

Before conducting any additional analysis, remember that 

the data collected may be incomplete or error-free. 

Consequently, data cleansing, or data cleaning utilising 

imputation techniques, is the next stage in this process. The 

imputation method approximates missing values [21], [22]. 

This method seeks to reduce the potential negative effects of 

missing data on the effectiveness of machine learning models. 

Figure 4 illustrates imputation in parameter estimation of the 

data distribution, which is still pertinent to new tests. 

By optimising the likelihood or log-likelihood function, the 

least squares alternative is the imputation method used to 

analyse earthquake data [5]. This method permits replacing 

absent values with a more precise estimate based on the 

probability that the value will occur. By employing this 

technique, it is possible to maximise the amount of 
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information gleaned from the available data while minimising 

the danger of bias or analytical distortion. As a result, the 

conclusions reached after analysing the earthquake data will 

be more reliable and can be utilised to assist policymakers in 

coping more effectively with future earthquake hazards. 

 
Fig. 4. Data cleaning results 

 

In data analysis that attempts to identify a relationship or 

relationships between two or more variables, calculating the 

correlation between attributes is an essential step. To uncover 

latent patterns and trends in the data, correlation examines the 

degree to which two variables move in tandem. Statistical 

methods such as Pearson or Spearman correlation coefficients 

are typically employed in this process, depending on the type 

of data encountered [23], [24]. Analysts can enhance their 

decisions and gain a deeper understanding of the relationships 

between these factors by examining the strength of the 

correlation between features. 

Typically, several procedures are employed when 

determining the relationship between qualities. The data must 

first be properly cleaned and processed to overcome outliers 

and eliminate missing data, which could skew the 

correlation's results. In addition, the correlation calculation is 

performed using a technique appropriate for the data type 

provided. Pearson's correlation coefficient can be used if the 

data are normally distributed; however, Spearman's 

correlation coefficient is preferred if the data are not normally 

distributed [23], [24]. After calculating the correlation, the 

data are analysed to determine the strength of the relationship 

between the characteristics, whether positive (both attributes 

increase at the same rate) or negative (one attribute increases 

while the other decreases). The findings of this connection 

serve as the basis for making decisions during data analysis 

and can be used to identify significant variables that affect a 

system. 

The phase of establishing the correlation between variables 

also affects the validity and quality of data analysis. A high 

correlation between two variables implies a strong association 

between them, and one can use this relationship as a guide 

when developing prediction models or making decisions 

based on these variables. Remember that correlation does not 

imply causation, as the close relationship between two 

variables does not necessarily indicate that one variable 

caused the other to change. As a result, careful consideration 

and a thorough understanding of the investigated data must 

always go hand in hand with correlation analysis. Correctly 

concluding the phases of calculating the correlation between 

attributes enables analysts to comprehend the complexity of 

the data better and make significant contributions to spatial 

data analysis. The correlation between attributes is presented 

in Figure 5. 

 
Fig. 5. The correlation between attributes 

 

The connection depicted in Figure 5 has a maximum value 

of 0.1. This demonstrates that the correlation criterion is 

insufficient, necessitating normalisation of the data. 

Normalisation is a crucial stage in the data analysis for 

eliminating or reducing imbalances and scale differences 

between features. Extreme data values may affect the efficacy 

of the analytical model, particularly when distance-based or 

optimisation techniques are employed. Normalisation 

modifies attribute values so that all data has an analogous 

scale or a similar distribution. This normalisation procedure 

can increase the efficacy and precision of data analysis, 

allowing us to identify more representative patterns, trends, or 

correlations. 

Numerous normalisation methods, such as Min-Max 

Scaling, Z-Score Normalisation, and Robust Scaling, are 

frequently employed in data analysis. The attribute values are 

transformed using min-max scaling into the range [0, 1], 

where the minimum value is 0 and maximum values are 1. 

Standardisation, an alternative term for Z-Score 

Normalisation, modifies the data with a mean of 0 and a 

standard deviation of 1. This method scales the data quite 

equitably while preserving the shape of the distribution. Using 

the median and interquartile range, Robust Scaling reduces 

the impact of anomalies during normalisation. The 

appropriate normalisation technique should be selected 

depending on the characteristics of the used data and the 

research objectives [25]–[27]. 

Normalisation is also crucial to the machine learning 

process. Because most machine learning algorithms are 

particularly sensitive to variations in attribute scales, some 

characteristics may dominate the learning process without 

normalisation, resulting in models that are biassed towards 

these attributes. Normalisation enables machine learning 

models to recognise more intricate and diverse patterns in 

standardised data [28], [29]. In addition, normalisation 

reduces the likelihood of overfitting and accelerates the 

convergence of learning algorithms. Normalisation is a 

crucial step that must be considered in the data analysis and 

machine learning processes [30], [31]. By properly 

implementing normalisation, we can extract deeper insights 

and comprehension from the data and improve the efficacy of 

subsequent analysis and predictive models. Figure 6 depicts a 

three-dimensional visualisation of latitude, longitude, 

magnitude, and depth data. As can be seen, the distribution of 
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earthquake data is separated into three colour categories in 

this visualisation. 

 

 
Fig. 6. A three-dimensional visualisation of latitude, seismic 

magnitude, and depth data 

 

The results of the identified distribution of earthquakes are 

then determined using random initial centroid values. This is 

beneficial for calculating the distance distribution matrix so 

that it can be carried on to the object grouping stage and used 

to determine cluster members based on the shortest distance 

from the centroid. In addition, recurrent literacy of the data is 

performed to generate new, improved centroid distances, as 

depicted in Figure 7. 

 

Fig. 7. Centroid point 

 

Figure 7 shows that cluster 1 earthquake activity in 

Indonesia from 2019 to 2022 is more prevalent at depths 

between 0 and 90 kilometres. In contrast, cluster 2 earthquake 

activity is more prevalent at depths between 90 and 300 

kilometres. In cluster 3, the depth range from 300 to 700 

kilometres had a lower frequency. Comparatively, the 

DBSCAN algorithm (Figure 8) yielded only two cluster 

values. 

 

 
Fig. 7. A three-dimensional visualisation of latitude, seismic 

magnitude, and depth data 

 

First cluster with position data of latitude 4.2131346, 

longitude 121.40729405, depth 18.64426488, and magnitude 

3.40164563. Latitude position data for the second cluster is 

4.73856731, longitude data is 121.82910727, profundity is 

146.01655868, and magnitude data is 3.85773938. Latitude 

position data is 5.7792682, longitude data is 123.2396748, 

data depth is 461.05691057, and magnitude data is 

4.42439024. 

 
Fig. 8. A three-dimensional visualisation of latitude, seismic 

magnitude, and depth data 

 

The number of clusters derived using the Elbow method 

based on the data fracture in Figure 8 is k = 3, or there are 

three clusters; this number is the result of forming optimal 

clusters for earthquake distribution data in 2019. Figure 10 

depicts the Aftershock visualisation from 2019 to 2022 in its 

entirety. 

 
Fig. 10. 3D Aftershock in the Flores Sea 

 

Studying aftershock activity in the Flores Sea from 2019 to 

2022 and comparing the K-means and DBSCAN algorithms 

has substantial implications for seismic comprehension and 

mitigating the risk of natural disasters. K-Means and 

DBSCAN are two clustering techniques with different 

approaches to data processing. In contrast to DBSCAN, 

which clusters data based on data density, K-Means clusters 

data based on the distance to the cluster centre, or centroid [1], 

[5]. The comparison's findings cast light on each system's 
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advantages and disadvantages for identifying trends and 

connections in aftershock activity. 

According to the study's findings, the two algorithms K-

Means and DBSCAN provide insightful information 

regarding aftershock activity in the Flores Sea. Both 

techniques yield relevant aftershock clusters and provide 

distinct perspectives on the region's seismic activity. K-

Means clusters are primarily based on the distance to the 

cluster centre, whereas DBSCAN clusters are based on spatial 

density and detect clusters that do not have a normal 

geometric shape. 

This study also includes a 3D visualisation of the data, 

which provides a more in-depth view of the aftershock 

distribution. The understanding of the geographical pattern 

and profundity of aftershocks is enhanced by three-

dimensional visualisation. These findings provide 

seismologists and other relevant parties with vital information 

they can use to control and mitigate risks in affected areas. 

This study determines the optimal number of clusters using 

a graphical elbow approach. This method can determine the 

number of aftershock clusters that best suit the data [32]–[34]. 

This method is employed in this study to contribute to the 

body of knowledge concerning the structure and clustering 

patterns that are valuable and reliable for analysing aftershock 

activity. 

This study substantially impacts the study of natural 

hazards and seismology as a whole. By comparing the K-

means and DBSCAN algorithms for analysing aftershock 

activity in the Flores Sea, we can understand the 

characteristics and distribution of aftershocks. These 

discoveries can aid in earthquake modelling, disaster 

mitigation planning, and developing risk-reduction measures 

for aftershocks. By gaining a deeper understanding of seismic 

activity, we can enhance community preparedness and reduce 

the impact of potential natural disasters. 

V. CONCLUSION 

The clustering method is useful for analysing earthquake 

activity because it can be used to organise earthquakes with 

similar characteristics into distinct clusters or groups. Popular 

clustering techniques like K-Means and DBSCAN were 

utilised in this study. K-Means is a method for clustering data 

based on its proximity to a particular cluster centre. 

DBSCAN, which stands for Density-Based Spatial Clustering 

of Applications with Noise, clusters data based on the data 

density encircling the data points. We intend to identify 

patterns and relationships between earthquakes in the Flores 

Sea region using these two methodologies. 

The Flores Sea region aftershock earthquake clustering 

results from 2019 to 2022 are then visualised in three 

dimensions. According to the statistics, three notable groups 

or concentrations of earthquake source depths exist. The first 

cluster has a depth of 33 to 70 kilometres; the second cluster 

has a depth of 150 to 300 kilometres; and the third cluster has 

a depth of 500 to 800 kilometres. Through 3D visualisation, 

we can better comprehend the pattern of these earthquakes' 

depth distribution, thereby gaining valuable insights into the 

region's seismic activity. 

We use the elbow method with 3D visualisation to 

determine the optimal number of Flores Sea aftershock data 

clusters. The elbow method graph is a technique for 

determining the optimal number of clusters based on the rate 

at which cluster variance decreases as the number of clusters 

increases. Using the elbow method chart results, we can 

determine the optimal number of earthquake aftershock 

clusters and gain a greater understanding of the structure and 

pattern of data clustering. We intend to determine the most 

relevant and valuable aftershock clusters for seismic activity 

research in the Flores marine region by combining 3D 

visualisation and elbow technique analysis. 

An analysis of the aftershock clustering data in the Flores 

Sea region will greatly assist in comprehending the seismic 

risk in the area. By identifying the depth groups of the 

earthquake sources, we can assess the potential hazards that 

may result from each cluster. Additionally, this knowledge 

may aid in developing earthquake response and disaster 

mitigation plans. This research's clustering techniques and 

data analysis significantly impact seismology and the study of 

natural disasters in general. By understanding the patterns and 

characteristics of earthquakes in the Flores Sea, we can 

enhance community preparedness and resilience in regions 

prone to earthquakes and other seismic catastrophes. 
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