
JNEST EISSN: 2961-8738 • PISSN: 2961-8916 • DOI: 10.56741/jnest.v1i02.171
Article Received 21 October 2022. Revised 01 November 2022.

37

Deep Reinforcement Learning for Tehran Stock
Trading
Neda Yousefi*

Abstract—One of the most interesting topics for research,
as well as for making a profit, is stock trading. It is known
that artificial intelligence has had a great influence on this
path. A lot of research has been done to investigate the
application of machine learning and deep learning methods
in stock trading. Despite the large amount of research done in
the field of prediction and automation trading, stock trading
as a deep reinforcement-learning problem remains an open
research area. The progress of reinforcement learning, as well
as the intrinsic properties of reinforcement learning, make it
a suitable method for market trading in theory. In this paper,
single stock trading models are presented based on the fine-
tuned state-of-the-art deep reinforcement learning algorithms
(Deep Deterministic Policy Gradient (DDPG) and Advantage
Actor Critic (A2C)). These algorithms are able to interact
with the trading market and capture the financial market
dynamics. The proposed models are compared, evaluated,
and verified on historical stock trading data. Annualized
return and Sharpe ratio have been used to evaluate the
performance of proposed models. The results show that the
agent designed based on both algorithms is able to make
intelligent decisions on historical data. The DDPG strategy
performs better than the A2C and achieves better results in
terms of convergence, stability, and evaluation criteria.

Index Terms—machine learning, deep learning, reinforce-
ment learning, deep deterministic policy gradient (DDPG),
Advantage Actor Critic (A2C), stock trading

I. INTRODUCTION

SEVERAL studies have been devoted to using machine
learning in the field of financial markets and stock

prediction and trading. Among them, stock trading is a
desired topic in the financial market and has been widely
discussed in modern artificial intelligence applications. Ex-
ploring autonomous trading algorithms that are adaptable
to the dynamic trading market is an essential need for
stock trading problems. The trading strategy is a kind of
complex sequential decision-making problem, and deep
reinforcement learning (DRL) has achieved remarkable
success in solving complex sequential decision-making
problems. Reinforcement learning (RL) can directly learn
an acting strategy, in the process of interacting with
the dynamic environment; therefore, it is a competitive
advantage of using DRL for stock trading. DRL stock
trading studies can be categorized under three classes:
value-based DRL (critic-only), policy-based DRL (actor-
only), and actor-critic DRL [1].

In value-based DRL approaches (critic-only), Q-
learning and deep Q-Learning have been applied to build
a stock trading system. Wang, Y., et al. [2] Proposed
employing deep Q-learning to build a deep Q-trading
system. Their research explains that their proposed deep

The author is with the Faculty of Mathematics, Statistics, and Com-
puter Science, Allameh Tabataba’i University, Tehran, Iran. (Correspond-
ing Author’s email: neda.yousefii@gmail.com).

Q-trading system can have better results than both buy-
and-hold strategies and strategies learned by iterative re-
inforcement learning. These kinds of value-based DRL are
always applied to solve the optimization problems defined
in discrete space [3]. Moreover, there is no single good
paradigm for the trading problem, because the trading
environment is too complex to be approximated in discrete
space. Besides, the proposed techniques are not good
for dynamic online trading applications [4]. In policy-
based (actor-only) DRL approaches, the algorithm learns
a policy, which directly maps states to actions. These
methods learned the policy directly from the continuous
data, and are considered a better framework for trading
applications compared to the Q-learning approaches [3].
Moody, J., et al. [4] found that systems using direct rein-
forcement learning (policy based) produce better trading
strategies than systems utilizing Q-learning (value function
method). In actor-critic DRL approaches, the reason actor-
critic might work well for the stock market is that they
consider the value-based approach as well as the policy-
based approach, then learn the best from both approaches.
Zheng, Z., et al. [5] proposed the extended value-based
deep Q-network (DQN) and the asynchronous advantage
actor-critic (A3C) model for better adapting to the trading
market. Their results show that A3C-extended outperforms
other models. In addition, the interesting part of the result
is that a simple A3C achieved close results to DQN-
extended. It shows the best performance of actor-critic
concerning value-based (DQN) approaches.

The Deep Deterministic Policy Gradient (DDPG) algo-
rithm learns the Q function and the policy simultaneously.
It can benefit from the use of off-policy data and the
Bellman equation to learn the Q-function. DDPG learns
the policy by applying the Q-function [6] [7]. Xiong, Z., et
al. [8] explored the potential of DDPG agent training for
learning stock trading strategies. Their results show that
the trained agent outperforms the Dow Jones Industrial
Average and the portfolio allocation method, with the
least variance in cumulative returns. Comparing the Sharpe
ratios shows that the DDPG agent is more robust than the
others in terms of balancing risk and return.

According to the research background, in this work, two
of the best-mentioned reinforcement-learning algorithms:
Deep Deterministic Policy Gradient (DDPG) [6] [7] [8],
and Advantage Actor Critic (A2C) [9]; are used for stock
trading applications. According to the former studies, these
two algorithms produce better results in comparison to the
other methods. We built an environment and defined action
space, state space, and reward function specifically for
the stock problem. In summary, this research studied the
application of deep reinforcement learning algorithms for
Tehran stock trading. Tehran stock market data is used for
comparing, evaluating, and testing the proposed models.

© 2022 IISTR

38 Journal of Novel Engineering Science and Technology, Vol. 01, No. 02, December 2022

The rest of this paper is organized as follows. Section
II covers preliminaries and background followed by some
required definitions and algorithms. Section III contains
the research methodology, including formulation of the
proposed stock trading problem, environment definition,
the architecture of both DDPG and A2C algorithms,
performance evaluation, and also the explanation of the
stock data in this research. Section IV describes the stock
data preprocessing and our experimental setup, followed
by the performance evaluation of the proposed strategies.
Section V concludes this study.

II. PRELIMINARY STUDIES AND BACKGROUND

The foremost critical highlight of recognizing rein-
forcement learning from other types of learning is that
it employs required data by evaluating the actions taken
instead of instructing them by giving correct activities. It
has the potential to create the requirement for a dynamic
investigation and an unequivocal trial-and-error explo-
ration for good behavior. Reinforcement learning can be
considered an intelligent system where an agent learns
from its environment through interaction and evaluates
what it learns in real time. In other words, a process that
an agent learns to adjust policies by interacting with the
unknown environment. The unknown environment is often
formalized as Markov Decision Process (MDP) by a tuple
(S,A, P,R, γ), where S is the (discrete or continuous)
state space, A is the (discrete or continuous) action space,
r : S × A → R is the (immediate) reward function, P is
the state transition model, and γ ∈ (0, 1) is the discount
factor that balances the short and long-term returns. [10]

Each reinforcement-learning problem includes the fol-
lowing elements: 1- Agent: learning agent. 2- Environ-
ment: this environment characterizes the exterior world in
a programmatic manner. Everything the agent(s) interacts
with is a portion of the environment. 3- Action/s: agent
can take action/s. 4- A reward function: by specifying the
reward function, the goal is defined as a reinforcement-
learning problem. An RL agent’s ultimate goal is maximiz-
ing the total reward it receives in the long run. 5- Policy:
a policy determines the learning agent’s actions/behavior
at a given time. 6- Model: in general, in a model-based
algorithm, the agent can potentially predict the dynamics
of the environment, because it has an estimate of the
transition function (and reward function). [10]

At each time step, the agent performs a mapping from
states to probabilities of selecting each possible action.
This mapping is called the agent’s policy and is shown
by πt, and πt(a|s) is the probability that At = a if
St = s. Nearly all reinforcement-learning algorithms
include estimating value functions that estimate how good
it is for the agent in a given state. Based on [11],
studies on reinforcement learning can be divided into three
categories: value-based RL, policy-based RL, and actor-
critic RL approaches. They are also grouped into off-policy
and on-policy approaches. Q-learning is a model-free, off-
policy, and value-based algorithm since it updates the Q
values without making any assumptions about the current
policy being followed. Rather, the Q-learning algorithm
simply states that the Q-value corresponding to a state St

and action at is updated using the Q-value of the next

state St+1 and the action at+1 that maximizes the Q-
value at that state St+1. Deep Q-learning (DQN) uses
a neural network to estimate the Q-value function. In
DQN, the action space is still discrete, but generally,
Q-learning (with function approximation) fails on many
simple problems and is poorly understood.

Let us define πθ (s) as a stochastic policy that assigns
probabilities to actions. Policy Gradient (PG) methods
compute the gradient of J(πθ) and then use gradient
descent to update the policy [10].

J (θ) = Es∼ρµ
[R (s, µθ (s))]. (1)

The Q-value of an action is the expectation of the reward
by choosing that action, and for the continuous situation;
The gradient is equal to the gradient of the Q-values.

Q∗ (s, a) = Eπ[R (s, a)], (2)

∇θJ (θ) = Es∼ρµ
[∇θQ

µ (s, a) |a=µθ
(s)]. (3)

∇θJ (θ) = Es∼ρµ [∇θµθ
(s)×∇aQ

µ (s, a) |a=µθ
(s)] (4)

Silver, et al. [12] used a function approximation Qφ(s, a)
for estimating the Q-value of any action and computing its
gradient by minimizing the quadratic error with the true
Q-values.

∇θJ (θ) = Es∼ρµ
[∇θµθ

(s)

×∇aQφ (s, a) |a=µθ
(s)],

(5)

J(φ) = Es∼ρµ
[Qµ (s, µθ (s))−Qφ (s, µθ (s)))

2
]. (6)

Lillicrap, et al. [7] proposed a Deep Deterministic Policy
Gradient (DDPG) that is an extension of the Deterministic
Policy Gradient (DPG) approach to work with non-linear
function approximators. In fact, they combined ideas from
DQN and DPG to create an algorithm to solve continuous,
off-policy problems. The DDPG benefits from using ex-
perience replay memory to store past transitions and learn
off-policy and using target networks to stabilize learning.
In the DDPG algorithm, the target network tracks the
trained network much more slowly than the DQN (update
parameters states in (7) and τ << 1), and as a result, it
creates more stability in learning the Q-values [13].

θ′ = τθ + (1− τ) θ′, (7)

J(φ) = Es∼ρµ
[(r (s, a, s′) + γQφ′ (s′, µθ (s

′))

−Qφ (s, a))
2
].

(8)

For doing exploration, DDPG uses an additive noise added
to the deterministic action to explore the environment.

at = µθ (st) + ε. (9)

In addition to the DDPG method, Also Advantage actor-
critic methods could be better than DQN and approximate
the advantage of the action [14].

∇θJ (θ) = Es∼ρπ,a∼πθ
[∇θlog πθ (s, a)Aφ (s, a)]. (10)

where Aφ(s, a) is the advantage estimate value. To com-
pute Aφ(s, a), diverse strategies can be utilized, such
as the Monte Carlo advantage estimate (11), Temporal

Yousefi: Deep Reinforcement Learning for Tehran Stock Trading (pp. 37-42) 39

Difference advantage estimate(12), and n-step advantage
estimate (13). [15]

Aφ (s, a) = R (s, a)− Vφ (s) ; (11)

Aφ (s, a) = r (s, a, s′) + τVφ(s
′)− Vφ (s) ; (12)

Aφ (s, a) =

n−1∑
k=0

τkrt+k+1 + τnVφ (st+n+1)

− Vφ(st).

(13)

Advantage Actor Critic (A2C) has an actor-critic archi-
tecture and benefits from an n-step advantage estimate.
It creates a batch of transitions (s, a, r, s′) by applying
policy πθ and computing the discounted sum of the next
n rewards.

Rt =

n−1∑
k=0

τkrt+k+1 + τnVφ(st+n+1), (14)

∇θJ (θ) =
∑
t

∇θlog πθ (st, at) (Rt − Vφ(st))], (15)

L (φ) =
∑
t

(Rt − Vφ(st))
2
. (16)

Concerning the above-mentioned reinforcement learn-
ing algorithms and previous research background, DDPG
and actor-critic (especially A2C) have better performance
in comparison to other reinforcement learning techniques.

III. RESEARCH METHODOLOGY

A. Reinforcement Learning Formulation for Stock Trading

As mentioned before, each reinforcement-learning prob-
lem includes the elements [10], which are specified as
follows for the proposed stock trading problem:

• State s = [open price, close price, high price, low
price, adjusted close price, volume, the number of
holdings of stocks, remaining balance]; Each state
is a vector that describes the current situation: cur-
rent balance, market variables (market variables are
released from the Tehran stock market exchanges,
which include open, close, high, low price, adjusted
close and volume), owned shares.

• Action A: a set of actions on all stocks. The available
actions for each stock include selling, buying, and
holding, which result in decreasing, increasing, and
no change of the holdings stocks, respectively.

• Reward r: taking action will produce an immediate
effect on the trading agent; profit or loss.

• Policy: the trading strategy of stocks at state s. It is
the probability distribution of choosing an action at
state s.

• Action-value function Q(s, a): the expected reward
achieved by action a at state s by applying the
proposed policy.

At this point, the goal of the trading agent is to maximize
the cumulative profit.

B. Architecture of Algorithms

In this research, both DDPG and A2C algorithms that,
based on the previous studies, have a better performance
than the other algorithms for stock trading, are applied to
our proposed model. Fig. 1 displays the brief comparison
of the DDPG and A2C algorithms. The architecture of the
DDPG and A2C algorithms are, respectively, presented in
Fig. 2 and Fig. 3. Then, Algorithm 1 and Algorithm 2,
depict the pseudo-code for DDPG and A2C algorithms,
respectively.

Fig. 1. Brief comparison of DDPG and A2C algorithm.

Fig. 2. Deep Deterministic Policy Gradient (DDPG) architecture.

Fig. 3. Advantage Actor Critic (A2C) architecture.

C. Performance Evaluations

Evaluation criteria are used to measure the efficiency
of proposed deep reinforcement learning algorithms for
stock trading and what the results of such methods will
be in practice. The main goal of stock trading is to
maximize long-term profit. Usually, and the same here,
criteria such as annualized return (AR) and Sharp ratio
(SR) are used to measure and evaluate financial strategies
and stock trading performance. The annualized return is

40 Journal of Novel Engineering Science and Technology, Vol. 01, No. 02, December 2022

Algorithm 1 Deep Deterministic Policy Gradient (DDPG) Algorithm [15].
1: Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ.
2: Initialize target network Q′ and µ′ with weights θQ

′ ← θQ, θµ
′ ← θµ.

3: Initialize replay buffer R.
4: For episode=1, M do
5: Initialize a random process ν for action exploration.
6: Receive initial observation state s1
7: For t = 1, T do
8: Select action at = µ (st|θµ) + νt according to the current policy and exploration noise.
9: Execute action at and observe reward rt and observe new state st+1.

10: Store transition (st, at, rt, st+1) in R.
11: Sample a random minibatch of N transitions (si, ai, ri, si+1) from R.
12: Set yi = ri + γQ′(si+1, µ

′
(
si+1|θµ

′
)
∣∣∣ θQ′

).

13: Update critic by minimizing the Loss: L = 1
N

∑
i (yi −Q(si, ai|θQ))

2.
14: Update the actor policy using the sampled policy gradient:
15: ∇θµJ ≈ 1

N

∑
i∇aQ

(
s, a

∣∣θQ) |s=si ,a=µ(si)∇θµµ(s|θµ)|si
16: Update the target networks:
17: θQ

′ ← τθQ + (1− τ) θQ
′
; θµ

′ ← τθµ + (1− τ) θµ
′

18: End for
19: End for

Algorithm 2 Advantage Actor Critic (A2C) Algorithm [15].
1: Randomly initialize critic network Vφ and actor πθ with weights.
2: Acquire a batch of transitions (s, a, r, s′) using the actor πθ.
3: For each state encountered, compute the discounted sum of the next n rewards

∑n
k=0 γ

krt+k+1 and use the critic to
estimate the value of the state encountered n steps later Vφ (st+n+1)
Rt =

∑n−1
k=0 γ

krt+k+1 + γnVφ(st+n+1).
4: Update the actor by using:

∇θJ (θ) = Es∼ρπ,a∼πθ
[∇θlog πθ (st, at)Aφ (st, at)]

Aφ (s, a) =
∑n−1

k=0 γ
krt+k+1 + γnVφ (st+n+1)− Vφ(st)

Aφ (s, a) =
∑n−1

k=0 γ
krt+k+1 + γnVφ (st+n+1)− Vφ(st)

∇θJ (θ) =
∑

t∇θ log πθ (st, at) (Rt − Vφ (st))
5: Update the critic by using:

L (φ) =
∑

t(Rt − Vφ(st))
2

6: Repeat

the geometric average amount of money earned by an
investment each year over a given time period. [16]

Sharpe Ratio =
Rp −Rf

σp
. (17)

where Rp is the return of the portfolio, Rf is the risk-free
rate, and σp is the standard deviation of the portfolio’s
excess return.

D. Stock Data

The dataset of the three biggest companies of the
Tehran stock market is used for evaluating and testing
the proposed model: Iran Telecommunication Company
(MKBT1), Isfahan’s Mobarakeh Steel Company (FOLD1),
and Isfahan Oil Refinery Company (PNES1). Stock data
from the New York Stock Exchange has been obtained
from the Yahoo Finance Site, and the data of the Tehran
Stock Exchange is downloaded from the Tehran Securities
Exchange Technology Management Company. All data is
used on a daily basis. The data has six main columns:
date, open price, close price, the lowest stock price of the
day, the highest stock price of the day, value, volume (the
number of shares traded per day), and adjusted close price.
In addition, Moving Average Convergence Divergence

(MACD) has also been used. All data is considered from
the first month of 2009 up to April 2021. The dataset is
divided into training, testing, and trading. The data from
2009 up to 2019 is used for training, whereas the data
from 2019 up to 2021 is used as test data.

In the preprocessing steps, we perform data cleaning
and data transformation for the stock data. In the data
cleaning phase, eliminating and/or filling in missing data
and null data for all different stocks has been done. In the
data transformation phase, different stock data have been
normalized.

The implementation has been done by using Python
within the TensorFlow [17], OpenAI gym [18], and by
using stable baselines [19]. Stable baselines are free and
open source. Moreover, it contains a valuable collection of
improved implementations of reinforcement learning and
has been used in many types of research [8] and [20].
It also has an integrated structure for algorithms, which
provides a better comparison of the implementation of
different algorithms and their results.

IV. RESULTS AND DISCUSSION

In the first step, data preprocessing was done on all
datasets. Then, in the training phase, by using data between

Yousefi: Deep Reinforcement Learning for Tehran Stock Trading (pp. 37-42) 41

(a) FOLD1 (b) MKBT1 (c) PNES1

Fig. 4. Stock price history as per close price.

Fig. 5. DDPG loss during the learning process in various iterations.

2009 and 2019, a trading agent is generated. The next
phase is performed to achieve the best parameters, includ-
ing learning rate, number of episodes, gamma, discount
factor, etc. The final phase and actually the test/trading
phase uses data from 2019 to 2021 to evaluate the perfor-
mance of the proposed trading agent. All those steps have
been done for both the DDPG trading agent and the A2C
trading agent.

As can be seen in Fig. 4, we can see a rapid decrease
in the selected stocks trends. One of the important rea-
sons to choose these specific stocks is their decreasing
procedure. Since clearly by applying trading agents to the
increasing data stocks, both proposed models will work
well. However, decreasing data stocks induce a different
level of challenge.

First, the Deep Deterministic Policy Gradient (DDPG)
algorithm is implemented on the stocks. This algorithm is
repeated and learned several times. The training, learning,
convergence, and error for all the steps are examined and
analyzed (see Figs. 6-7).

It is clear from Fig. 6 that convergence of the model
is achieved in all iterations, which is almost a similar and
integrated process for all of them. In addition, all iterations
finally converged to a certain value, and the only difference
is in the episode of the convergence.

By comparing two figures (i.e., Fig. 6 and Fig. 7), it
is obvious that, unlike the DDPG trading agent where
almost all the iterations had the same behavior and all
converged to a specific value, with the A2C trading agent,
different iterations lead to different results. In addition, the
average results from the A2C trading agent are lower than
the DDPG trading agent.

The results show that the DDPG trading agent out-
performs the A2C performance in terms of the speed

of convergence, stability of convergence, and also the
value of profit. The annualized return and Sharpe ratio
are calculated for both proposed algorithms and all stocks
and are shown in Table I.

TABLE I
RESULTS OBTAINED FROM APPLYING THE TEST DATASET
(AR=ANNUALIZED RETURN AND SR= SHARPE RATIO)

Esfahan’s Mobarakeh Iran Esfahan Oil
Steel Company Telecommunication Refinery Company

(FOLD1) Company (MKBT1) (PNES1)
AR SR AR SR AR SR

DDPG 85.20 1.84 83.88 1.68 78.53 1.40
A2C 80.40 1.31 82.43 1.66 73.32 1.20

V. CONCLUSION

In this research, in addition to theory, the application of
the deep reinforcement learning algorithms is examined
by using the Deep Deterministic Policy Gradient (DDPG)
agent and Advantage Actor Critic (A2C) agent for the
Tehran stock data. The results show that these algorithms
can be applied to stock trading. In addition, it is revealed
that the DDPG trading agent shows a better performance in
regard to convergence, stability, return, and also relatively
other metrics. These results prove the benefits of the
DDPG algorithm that uses the experience replay memory
to store past transitions and learn off-policy and uses target
networks to stabilize learning and convergence. Moreover,
an additive noise added to deterministic action creates
more exploration and provides a better return for the
DDPG agent.

In the future, it will be desirable to study a larger
number of stocks and also consider the choice of stock
among many other stocks. It is also desirable to explore

42 Journal of Novel Engineering Science and Technology, Vol. 01, No. 02, December 2022

Fig. 6. Convergence of the DDPG trading agent in various iterations.

Fig. 7. Convergence of the A2C trading agent in various iterations.

the possible application of proposed frameworks to other
real-world scenarios in a real-time manner.

REFERENCES

[1] T. G. Fischer, “Reinforcement learning in financial markets-a
survey,” FAU Discussion Papers in Economics, Tech. Rep., 2018.

[2] Y. Wang, D. Wang, S. Zhang, Y. Feng, S. Li, and Q. Zhou, “Deep
Q-trading,” cslt. riit. tsinghua. edu. cn, 2017.

[3] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct rein-
forcement learning for financial signal representation and trading,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 28, no. 3, pp. 653–664, 2016.

[4] J. Moody and M. Saffell, “Learning to trade via direct reinforce-
ment,” IEEE Transactions on Neural Networks, vol. 12, no. 4, pp.
875–889, 2001.

[5] Y. Li, W. Zheng, and Z. Zheng, “Deep robust reinforcement
learning for practical algorithmic trading,” IEEE Access, vol. 7,
pp. 108 014–108 022, 2019.

[6] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in International
Conference on Machine Learning. PMLR, 2014, pp. 387–395.

[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep rein-
forcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[8] X.-Y. Liu, Z. Xiong, S. Zhong, H. Yang, and A. Walid, “Practical
deep reinforcement learning approach for stock trading,” arXiv
preprint arXiv:1811.07522, 2018.

[9] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International Conference on Machine
Learning. PMLR, 2016, pp. 1928–1937.

[10] R. S. Sutton and A. G. Barto, “Reinforcement learning: An intro-
duction. 2018,” Google Scholar Digital Library, 2011.

[11] T. G. Fischer, “Reinforcement learning in financial markets-a
survey,” FAU Discussion Papers in Economics, Tech. Rep., 2018.

[12] D. Silver, H. Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley,
G. Dulac-Arnold, D. Reichert, N. Rabinowitz, A. Barreto et al.,

“The predictron: End-to-end learning and planning,” in Interna-
tional Conference on Machine Learning. PMLR, 2017, pp. 3191–
3199.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[14] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in
Neural Information Processing Systems, vol. 12, 1999.

[15] J. Vitay, “Deep reinforcement learning,” 2020.
[16] I. Cooper, “Arithmetic versus geometric mean estimators: Setting

discount rates for capital budgeting,” European Financial Manage-
ment, vol. 2, no. 2, pp. 157–167, 1996.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}:
a system for {Large-Scale} machine learning,” in 12th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 16), 2016, pp. 265–283.

[18] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[19] “Welcome to stable baselines docs! - RL baselines made easy,”
https://stable-baselines.readthedocs.io/, accessed: 2022-11-15.

[20] H. Yang, X.-Y. Liu, S. Zhong, and A. Walid, “Deep reinforcement
learning for automated stock trading: An ensemble strategy,” in
Proceedings of the First ACM International Conference on AI in
Finance, 2020, pp. 1–8.

Neda Yousefi received her bachelor’s degree in Applied Mathematics and
her first master’s degree in Industrial Engineering (Economic and Social
Systems Engineering) from the Amirkabir University of Technology,
Iran (Tehran Polytechnic). In 2021, she received her second master’s
degree in Computer Science (Soft Computing and Artificial intelligence)
from Allameh Tabataba’i University Tehran, Iran. Her research interests
are in Machine Learning, Deep Learning, Computer Vision, and Image
Processing.

